skip to main content

Protocol development for biomass quantification in membrane autopsies

Project

Project Details

Program
Environmental Science and Engineering
Field of Study
Chemical & Biological engineering
Division
Biological and Environmental Sciences and Engineering
Center Affiliation
Water Desalination and Reuse Center

Project Description

A membrane autopsy is a valuable tool used in membrane (bio)fouling studies. One of the objectives of the autopsy is to quantify the amount of biomass. The current method involves sonication of the sample, followed by filtration and DOC measurement. The objective of the project is to investigate the influence of the sample preparation method on the measured value. 

About the Researcher

Johannes Vrouwenvelder
Professor, Environmental Science and Engineering
Biological and Environmental Science and Engineering Division

Affiliations

Education Profile

  • Ph.D., Biotechnology, Faculty of Applied Sciences, Delft University of Technology, The Netherlands, 2009

Research Interests

a€‹Professor Vrouwenvelder studies microbiological and process technological aspects of water treatment and transport. This includes fouling control of membrane systems and cooling towers, and sensors and tools for biofouling/biofilm monitoring and rapid sensitive microbial water quality monitoring. Additionally, Professor Vrouwenvelder performs numerical modelling of fouling and water treatment system performance, and studies the dynamics of the microbial ecology of water distribution systems.

Selected Publications

  • Early non-destructive biofouling detection and spatial distribution: application of oxygen sensing optodes | N.M. Farhat, M. Staal, A. Siddiqui, S.M. Borisov, S.S. Bucs, J.S. Vrouwenvelder Water Research, Volume 83, p. 10-20, (2015)
  • Dynamics of bacterial communities before and after distribution in a full-scale drinking water network | J. El-Chakhtoura, E. Prest, P. Saikaly, M.C.M. van Loosdrecht, F. Hammes, J.S. Vrouwenvelder Water Research, Volume 74, p. 180-190. (2015)
  • Experimental and numerical characterization of the water flow in spacer-filled channels of spiral-wound membranes | S.S. Bucs, R. Valladares Linares, J.O. Marston, A.I. Radu, J.S. Vrouwenvelder, C. Picioreanu, Water Research, Volume 87, p. 299-310, (2015)
  • Biological stability of drinking water: Controlling factors, methods, and challenges | E.I. Prest, F. Hammes, M.C.M. van Loosdrecht, J.S. VrouwenvelderFrontiers in Microbiology, Volume 7, Issue FEB, Article number 45 (2016)
  • Development and characterization of 3D-printed feed spacers for spiral wound membrane systems | A. Siddiqui, N.M. Farhat, S.S. Bucs, R. Valladares Linares, C. Picioreanu, J.C. Kruithof, M.C.M. van Loosdrecht, J. Kidwell, J.S. Vrouwenvelder, Water Research, Volume 91, p. 55-67, (2016)

Desired Project Deliverables

The student should critically evaluate the current method, and propose or develop improvements/alternatives.

Recommended Student Background

Chemistry, process engineering, microbiology, environmental engineering, with an affinity for chemical analysis

We are shaping the
World of Research

Be part of the journey with VSRP

Find a Project
3-6 months
Internship period
100+
Research Projects
3.5/4
Cumulative GPA
310
Interns a Year