skip to main content

Microfluidics-based single-molecule fluorescence imaging of nanoscopic cellular interactions

Project

Project Details

Program
BioScience
Field of Study
​Fluorescence microscopy, Micro/nano fabrication, Optics, Biophysics, Immunology
Division
Biological and Environmental Sciences and Engineering

Project Description

The adhesion of cells to the endothelium occurs through spatio-temporally regulated interactions that are mediated by multiple intra- and inter-cellular components. The mechanism of cell adhesion has been investigated primarily using ensemble-based experiments, which provides indirect information about how individual molecules work in such a complex system. In this project, we develop microfluidics-based in-vitro live-cell single-molecule fluorescence imaging technique to unravel nanoscopic spatiotemporal interaction between adhesion molecules during the cell migration. Specifically, we aim to address some key questions in the initial step of hematopoietic stem cell homing mediated by selectin-ligand interactions.

About the Researcher

Satoshi Habuchi
Professor, Bioscience
Biological and Environmental Science and Engineering Division

Affiliations

Education Profile

  • Postdoctoral Fellow, Harvard Medical School, 2005
  • Postdoctoral Fellow, Katholieke Universiteit Leuven, 2001
  • Ph.D., Hokkaido University, 2001
  • M.Sc., Hokkaido University, 1999
  • B.Sc., Hokkaido University, 1997

Research Interests

Professor Habuchi's research focuses on the development of tools and materials for fluorescence molecular imaging. His research interests include the development of microfluidics-based super-resolution/single-molecule fluorescence imaging platform for studying cellular interactions in the presence of external force, development of near-infrared/short wavelength infrared fluorescent nanoparticles using conjugated polymers for single-molecule/particle fluorescence imaging in biological tissues, and development of new single-molecule tracking methods to capture hidden nonrandom motion and conformational dynamics at the molecular level.

Selected Publications

  • AbuZineh, K.; Joudeh, L. I.; Al Alwan, B.; Hamdan, S. M.; Merzaban, J. S.; Habuchi, S. ""Microfluidics-based super-resolution microscopy enables nanoscopic characterization of blood stem-cell homing"", Sci. Adv. 2018, 4, eaat5304.
  • Abadi, M.; Serag, M. F.; Habuchi, S. ""Entangle polymer dynamics beyond reptation"", Nat. Commun., 2018, 9, 5098.
  • Piwonski, H.; Michinobu, T.; Habuchi, S. a€œControlling photophysical properties of ultrasmall conjugated polymer nanoparticles through polymer chain packinga€, Nat. Commun., 2017, 8, 15256.
  • Serag, M. F.; Habuchi, S. a€œConserved linear dynamics of single-molecule Brownian motiona€, Nat. Commun., 2017, 8, 15675.
  • Serag, M. F.; Abadi, M.; Habuchi, S. a€œSingle-molecule diffusion and conformational dynamics by spatial integration of temporal fluctuationsa€, Nat. Commun., 2014, 5, 5123.
  • Loveland, A. B.; Habuhi, S.; Walter, J. C.; van Oijen, A. M. a€œA general approach to break the concentration barrier in single-molecule imaginga€, Nat. Methods, 2012, 9, 987-992.
  • Habuchi, S.; Ando, R.; Dedecker, P.; Verheijen, W.; Mizuno, H.; Miyawaki, A.; Hofkens, J. a€œReversible single-molecule photoswitcing in the GFP-like fluorescent protein Dronpaa€, Proc. Natl. Acad. Sic. USA, 2005, 102, 9511-9516.
  • Abadi, M.; Serag, M. F.; Habuchi, S. ""Entangle polymer dynamics beyond reptation"", Nat. Commun., 2018, 9, 5098.
  • AbuZineh, K.; Joudeh, L. I.; Al Alwan, B.; Hamdan, S. M.; Merzaban, J. S.; Habuchi, S. ""Microfluidics-based super-resolution microscopy enables nanoscopic characterization of blood stem-cell homing"", Sci. Adv. 2018, 4, eaat5304.

Desired Project Deliverables

​Development of new microfluidics-based live-cell single-molecule fluorescence imaging technique.Characterization of nanoscopic spatiotemporal interaction between selectins and their ligands occurring during the cell migration.​

We are shaping the
World of Research

Be part of the journey with VSRP

Find a Project
3-6 months
Internship period
100+
Research Projects
3.5/4
Cumulative GPA
310
Interns a Year