Project Details
Program
Chemical Engineering
Field of Study
Chemistry or Chemical Engineering
Division
Biological and Environmental Sciences and Engineering
Faculty Lab Link
Project Description
The goal of this project is the development of multilayer polymeric membranes for liquid separation. The main target is the application in the pharmaceutical industry for the separation of complex mixtures of molecules with size smaller than 500 g/mol. The membranes are mainly prepared by interfacial polymerization as flat-sheet or hollow fibers. The characterization methods are chromatography, electron microscopy, and performance tests mimicking operational conditions. There will be possibilities of scaling up the membranes with the best performance.
About the Researcher
Suzana Nunes
Professor, Environmental Science and Engineering
Affiliations
Education Profile
- Postdoc and Humboldt Fellow, Johannes Gutenberg University, Mainz, Germany
- Ph.D. Chemistry, University of Campinas, Brazil, 1985
Research Interests
Professor Nunes' research interests are new polymeric materials for membrane manufacture, characterization and application, particularly for nanofiltration, pervaporation and gas separation.Selected Publications
- S. P. Nunes, P. Z. Culfaz-Emecen, G. Z. Ramon, T. Visser, G. H. Koops, W. Jin, M. Ulbricht, Thinking the future of membranes: Perspectives for advanced and new membrane materials and manufacturing processes, J. Membr. Sci. 2020, 598, 117761.
- T. Huang, B. A. Moosa, P. Hoang, J. Liu, S. Chisca, G. Zhang, M. Alyami, N. M. Kashab, S. P. Nunes, Molecularly-porous ultrathin membranes for highly selective organic solvent nanofiltration, Nature Comm 2020, 11, 5882.
- J. Liu, S. Wang, T. Huang, P. Manchanda, E. Abou-Hamad, S. P. Nunes, Smart covalent organic networks (CONs) with ""on-off-on"" light-switchable pores for molecular separation, Sci. Adv. 2020, 6, eabb3188.
- S. Wang, L.Yang, G. He, B. Shi, Y. Li, H. Wu, R. Zhang, S. Nunes, Z. Jiang, Two-dimensional nanochannel membranes for molecular and ionic separations, Chem. Soc. Rev. 2020, 49, 1071-1089.
- M. D. Vincenzo, A. Tiraferri, V.-E. Musteata, S. Chisca, R. Sougrat. L. Huang, S. P. Nunes, M. Barboiu, Biomimetic artificial water channel membranes for enhanced desalination, Nature Nanotechnology 2021, 16, 190-196.
Desired Project Deliverables
Thin-film composite membranes for liquid separation
Recommended Student Background
Chemistry
Chemical Engineering
We are shaping the
World of Research
Be part of the journey with VSRP
3-6 months
Internship period
100+
Research Projects
3.5/4
Cumulative GPA
310
Interns a Year