skip to main content

Materials Engineering for Soil Amendment in Saudi Arabia

Project

Project Details

Program
Environmental Science and Engineering
Field of Study
materials engineering, food-water-climate security, organic landfill diversion
Division
Biological and Environmental Sciences and Engineering
Center Affiliation
Water Desalination and Reuse Center

Project Description

Our group has pioneered game-changing technology to couple the giga-scale challenge of organic landfill diversion with the giga-scale opportunity of desert agriculture and greening. We are producing engineered biochar (EnB) by pyrolyzing organic waste, such as chicken manure, crop residue, and food scraps, and subjecting it to a post-treatment. We are studying the effects of its application on food crops as well as native plants as a function of synthesis, post-treatment, dosing, nutrient loading, and variable irrigation regimes.

About the Researcher

Himanshu Mishra
Associate Professor, Environmental Science and Engineering
Biological and Environmental Science and Engineering Division

Affiliations

Education Profile

  • Elings Prize Postdoctoral Fellow, University of California Santa Barbara, 2013-2014
  • Ph.D., California Institute of Technology, 2013M.S., Purdue University, 2007
  • B.E., Punjab Engineering College, 2005

Research Interests

Biomimetics Chemistries and electrification at water-hydrophobe interfacesSurface forces (hydrophobic interactions, DLVO, structural forces) Superhydrophobic sand mulches and soil amendments for arid land agriculture

Selected Publications

  • Das, R., Ahmad, A., Nauruzbayeva, Mishra, H.*, ""Biomimetic Coating-free Superomniphobicity"" (accepted, Scientific Reports, #2e02d35e-86bd-44e6-b70c-34c82bc49123)
  • Mahadik, G. A., Hernandez Sanchez, J. F., Arunachalam, S., Gallo Jr., A., Farinha, A. S., Thoroddsen, S. T., Mishra, H.*, Duarte, C. M., ""Superhydrophobicity and Size Reduction Allowed Water Striders to Colonize the Ocean"" (accepted, Scientific Reports, SREP-19-11017)
  • Pillai, S., Santana, A., Das, R., Shrestha, B.R., Manalastas, E., Mishra, H*, ""A Molecular- to Macro-Scale Assessment of Direct Contact Membrane Distillation for Separating Organics from Water"" (accepted, Journal of Membrane Science, https://doi.org/10.1016/j.memsci.2020.118140)
  • Gonzalez-Avila, S. R., Nguyen, D. M., Arunachalam, S., Domingues, E., Mishra, H.*, Ohl, C-D., ""Mitigating Cavitation Through a Biomimetic Gas-entrapping Microtextured Surfaces"", Science Advances, 2020, https://advances.sciencemag.org/content/6/13/eaax6192 (https://advances.sciencemag.org/content/6/13/eaax6192)
  • Shrestha, B. R., Pillai, S., Santana, A., Donaldson, Jr., S. H., Pascal, T. A., Mishra, H.*, ""Nuclear Quantum Effects in Hydrophobic Nanoconfinement"", Journal of Physical Chemistry Letters, 2019, 10, 5530-5535 (Journal cover; Featured on Phys.org, Nanowerk.com, KAUST Discovery, etc.)
  • Gallo Jr., A., Farinha, A. S., Dinis, M., Emwas, A-H., Santana, A., Nielsen, S., Goddard III, W. A., Mishra, H.*, ""The Chemical Reactions in Electrosprays of Water Do Not Always Correspond to Those at the Pristine Air-Water Interface"", Chemical Science, 2019, 10, 2566-2577 (Journal Cover; featured on Phys.org, KAUST Discovery, etc.)
  • Domingues, E. M., Arunachalam, S., Nauruzbayeva, Mishra, H.*, ""Biomimetic Coating-free Surfaces for Long-term Entrapment of Air under Wetting Liquids"", Nature Communications, 2018, 9, Article Number: 3606. (Featured on Nature Chemistry Channel 'Behind the Paper', Phys.Org, and Eureka Alert)
  • Domingues, E. M., Arunachalam, S., Mishra, H.*, ""Doubly Reentrant Cavities Prevent Catastrophic Wetting Transitions on Intrinsically Wetting Surfaces"", ACS Applied Materials & Interfaces, 2017, 9, 21532-38 (Featured on Engineers Australia (https://www.engineersaustralia.org.au/portal/news/micro-texture-inspired-nature-makes-surfaces-liquid-repellent) , EurekAlert! (https://www.eurekalert.org/pub_releases/2017-07/kauo-npa073017.php) , Phys.org (https://phys.org/news/2017-07-nature-key-repelling-liquids.html) )

Desired Project Deliverables

1) materials characterization - surface area, ion-exchange capacity, 2) application to plants - pot-scale and field work 3) monitoring plant health - yield, biomass growth (leaves, branches, stem, etc.), chlorophyll content, gas-exchange, etc. 4) analyzing results 5) scientific writing

Recommended Student Background

agronomy
plant science
chemical engineering
irrigation

We are shaping the
World of Research

Be part of the journey with VSRP

Find a Project
3-6 months
Internship period
100+
Research Projects
3.5/4
Cumulative GPA
310
Interns a Year