skip to main content

Find a Project

Screening of Organic Semiconductors for Photocatalytic Hydrogen Production

Project

Project Details

Program
Materials Science & Engineering
Field of Study
Materials Science and Engineering, Chemistry
Division
Physical Sciences and Engineering

Project Description

Organic semiconductors are attracting growing interest as photocatalysts for sustainable hydrogen production, thanks to their tunable energy levels, structural versatility, and compatibility with low-cost solution processing. Yet, the key challenge remains in identifying donor–acceptor systems that combine strong light absorption with efficient charge separation. This VSRP project aims to identify and evaluate promising organic semiconductors for photocatalytic hydrogen production by correlating their structural, optical, and electronic properties with solar-driven catalytic performance. The project will provide students with hands-on experience in exploring a library of organic semiconductors for solar-to-hydrogen conversion. The candidate will fabricate thin films and/or nanoparticles using solution-based methods and characterize their optical and electronic properties with advanced techniques including UV–vis spectroscopy, photoluminescence, and ultra-high vacuum photoelectron spectroscopy. Photocatalytic hydrogen evolution will then be tested under simulated solar illumination in close collaboration with postdoctoral researchers. By linking molecular structure to catalytic performance, this project will contribute to establishing fundamental design principles for next-generation organic photocatalysts. Students will gain valuable exposure to cutting-edge surface science methods, materials characterization, and energy conversion technologies—an ideal opportunity for those interested in renewable energy and advanced functional materials.

About the Researcher

Derya Baran
Associate Professor, Material Science and Engineering
Physical Science and Engineering Division

Affiliations

Education Profile

  • Research Associate, JA¼lich Forschungszentrum, Germany, 2016
  • Postdoctoral Fellow, Center for Plastic Electronics, Imperial College London, UK, 2015
  • PhD, Material Science and Engineering, Friedrich-Alexander University Erlangen-Nurnberg, Germany, 2014
  • MSc, Chemistry, Middle East Technical University, Turkey, 2010
  • BSc, Chemistry, Middle East Technical University, Turkey, 2008

Research Interests

a€‹Professor Baran's research interests lie in the area of solution processable organic/hybrid soft materials for electronic devices. Such soft semiconductor materials possess a viable platform for printed, large area, stretchable and wearable electronics that can be used as solar cells, smart windows, OFETs, thermoelectrics, sensors and bio-electronics. a€‹Professor Baran is particularly interested in interface engineering for organic/hybrid solar cells, transparent solar cells for building integrated photovoltaics and stability/degradation studies for long lifetime organic solar cells. She has led projects on i) conjugated polymers for electrochromic devices; ii) non-fullerene acceptors for organic solar cells; iii) multi-component and multi-layered solar cell devices; and iv) understanding the correlation between recombination and nano-morphology in solution processed solar cells. Professor Baran aims to expand the applications of solution processable organic/hybrid semiconductors and to explore their limits in organic/hybrid thermoelectric devices and bio-electronics in the future.

Selected Publications

  • Baran, D.; Ashraf, S. R.; Hanifi, A. David; Abdelsamie, M.; Gasparini, N.; Rohr, J.; Holliday, S.; Wadsworth, A.; Lockett, S.; Nelson, J.; Brabec, C. J.; Amassian, A.; Salleo, A.; Kirhcartz, T.; Durrant, J. R., McCulloch, I. ,2016, Reducing the efficiencya-stabilitya-cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells, Nat. Mater. DOI: 10.1038/NMAT4797.
  • Baran, D.; Kirhcartz, T.; Wheeler, S.; Dimitrov, S.; Abdelsamie, M.; Gorman, J.; Ashraf, S. R.; Holliday, S.; Gasparini, N.; Yan, H.; Amassian, A.; Brabec, C. J.; Durrant, J. R.; McCulloch, I., 2016, Reduced voltage losses yield 10% and >1V fullerene free organic solar cells, Energ. Environ. Sci., DOI: 10.1039/C6EE02598F.
  • Gasparini, N.; Jiao, Xuechen, Heumueller, T.; Baran, D.; Matt, G. M.; Fladischer, S.; Spieker, E.; Ade, H.; Brabec, C. J.; Ameri, T., 2016, Designing ternary blend bulk heterojunction solar cells with reduced carrier recombination and a fill factor of 77%, Nat. Energ. 1, 16118.
  • Holliday, S.; Ashraf, S. R.; Wadsworth, A.; Baran, D.; Nielsen, C. B.; Tan, C. H.; Dimitrov, S.; Yousaf, S. A.; Shang, Z.; Gasparini, N.; Brabec, C. J.; Salleo, A.; Durrant, J. R. ; McCulloch, I., 2016, High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor, Nat. Commun., 7,11585.
  • Hou Y.; Chen W.; Baran D.; Stubhan T.; Luechinger N. A.; Hartmeier B.; Richter M.; Min J.; Chen S.; Ramirez Quiroz C. O.; Li N.; Zhang H.; Heumueller T.; Matt G. J.; Osvet A.; Forberich K.; Zhang Z. G.; Li Y.; Winter B.; Schweizer P.; Spiecker E.; Brabec, C. J., 2016, Overcoming the Interface Losses in Planar Heterojunction Perovskitea€Based Solar Cells, Adv. Mater., 28, 5112a-5120.

Desired Project Deliverables

A library of organic semiconductor materials suitable for photocatalytic hydrogen generation